Sharps.se - Sveriges bästa sportsbettingforum med rekar, spelförslag och bettingtips

Sharps.se - Sveriges bästa sportsbettingforum med rekar, spelförslag och bettingtips (https://www.sharps.se/forums/)
-   Tänkarhörnan (https://www.sharps.se/forums/taenkarhoernan/)
-   -   Efter hur många spel handlar det om skicklighet och inte tur? (https://www.sharps.se/forums/taenkarhoernan/4731-efter-hur-manga-spel-handlar-det-om-skicklighet-och-inte-tur/)

zz 2010-11-12 19:17

Citat:

Ursprungligen postat av talysbajare (Inlägg 76026)
Hatar ordet tur, vad är tur? finns tur? tror inte på tur alls.

Han har ju en bajen-avatar, klart som fan han inte tror på tur...

AndreasB1897 2010-11-12 19:24

Citat:

Ursprungligen postat av zz (Inlägg 78679)
Han har ju en bajen-avatar, klart som fan han inte tror på tur...

Om vi nu ska gå in på bajen så har inte TUR existerat på söder sen Jesus korsfästes ta mig fan! :gun_bandana:

zz 2010-12-22 21:38

Citat:

Ursprungligen postat av Zimond (Inlägg 77119)
Det går inte att säga någon generell siffra. Det beror på vilka odds man spelar till. Höga odds kräver ett större urval och vice versa.

Det jag gör är att räkna fram ett standard score (z) för att sedan med hjälp av det räkna fram sannolikheten för att resultatet är baserat på slumpen. Vill ni göra det i Excel så använder ni =1-NORMSFÖRD(z). Om ni inte vill använda Excel så kan ni använda den här kalkylatorn

Formeln för z är:

z = (vinster-förluster)/( √(vinster+förluster))

Några exempel:

Qirren är 112 - 88 i sitt Håkki spread. Det ge följande z:

(112 - 88)/(√(112+88) = 1,70

För in z, alltså 1.70, i kalkylatorn och du får fram att sannolikheten är 4.5 % att resultatet är baserat på slumpen.

En av mina marknader gick 99-69 förra säsongen med ett z på 2,31. Sannolikheten att jag inte har någon aning om vad jag sysslar med där är då 1.04 %.

RAS gick 265-188 förra året i basketen. Det ger ett z på 3,61 och en sannolikhet på 0,015 % att det är slumpen som har genererat resultatet.

Det är alltså önskvärt att ens z är så högt som möjligt. Hur högt z som behövs för att med all säkerhet kunna säga att man är vinnande tänker jag inte ta ställning till. Om du är 570-430 är sannolikheten för att det är slumpen som har rekat 0,0005%. Är det tillräckligt för att vi ska veta att du är vinnande?

Rätta mig gärna om något är galet. Jag är till exempel osäker på hur bra detta stämmer när man blandar spel med stor skillnad i vinstchanser.

Väcker liv i den här tråden då jag har en liten fråga:

Zimond i ditt exempel här utgår du från att det är coin-flip chans (tror jag?) att Oirren ska sätta sitt spel. Går det att ändra den variabeln i formeln på något vis?

zz 2010-12-22 21:55

Antag till exempel att man lirat 100 basketspel till 3x pengarna. Man har gått 50-50. Hur räknar man ut sannolikheten för att man har haft tur då?

LadyDeWinter 2010-12-22 22:47

Citat:

Ursprungligen postat av zz (Inlägg 90882)
Antag till exempel att man lirat 100 basketspel till 3x pengarna. Man har gått 50-50. Hur räknar man ut sannolikheten för att man har haft tur då?

Gör en någorlunda uträkning.

Nollhypotes: p < 0,333

Mothypotes: p > 0,333

punktskattning för andel = 50 / 100 = 0,5

z = 1,96 (95 % säkerhet)

z = (0,5 - 0,333) / ((0,333 (1-0,333)/100)^0,5 = 0,167 / 0,00222111^0,5 = 0,167 / 0,0471 = 3,54

3,54 > 1,96

Så med 95% säkerhet så är det statistiskt säkertställt att du är bättre än oddssättarna. Då satte jag att de 3,0 i odds till 0,333 i chans. Fan, är lite trött såhär på kvällen så vet inte om jag gjort rätt, men har för mig det.

zz 2010-12-22 22:59

Citat:

Ursprungligen postat av LadyDeWinter (Inlägg 90903)
Gör en någorlunda uträkning.

Nollhypotes: p < 0,333

Mothypotes: p > 0,333

punktskattning för andel = 50 / 100 = 0,5

z = 1,96 (95 % säkerhet)

z = (0,5 - 0,333) / ((0,333 (1-0,333)/100)^0,5 = 0,167 / 0,00222111^0,5 = 0,167 / 0,0471 = 3,54

3,54 > 1,96

Så med 95% säkerhet så är det statistiskt säkertställt att du är bättre än oddssättarna. Då satte jag att de 3,0 i odds till 0,333 i chans. Fan, är lite trött såhär på kvällen så vet inte om jag gjort rätt, men har för mig det.

Tackar och bockar för detta!! :) 33% av mina sharps till dig!

Zimond 2010-12-22 23:02

Citat:

Ursprungligen postat av zz (Inlägg 90882)
Antag till exempel att man lirat 100 basketspel till 3x pengarna. Man har gått 50-50. Hur räknar man ut sannolikheten för att man har haft tur då?

Då får man nog räkna ut z manuellt.

En apas vinstchans på en sådan marknad borde väl vara ungefär 30 %, vilket på 100 spel ger en standardavvikelse på 4,5. Capper-apans resultat, 50-50, avviker med 20 från det förväntade resultatet, 30-70. Med andra ord är apans resultat ungefär 4,45 standardavvikelser ifrån det förväntade resultatet. (20/4,5)

Z är med andra ord 4,45, och det verkar otroligt att slumpen ligger bakom resultatet. Då är det troligare att den som gått 50-50 till oddset 3 är en väldigt duktig capper, vars sanna träffprocent kanske är runt 40 %.

Tror att det stämmer men jag reserverar mig för fel! : )


Edit:

LadyDeWinter hann före och har säkert mer rätt!

Zimond 2010-12-22 23:23

Citat:

Ursprungligen postat av LadyDeWinter (Inlägg 90903)
Gör en någorlunda uträkning.

Nollhypotes: p < 0,333

Mothypotes: p > 0,333

punktskattning för andel = 50 / 100 = 0,5

z = 1,96 (95 % säkerhet)

z = (0,5 - 0,333) / ((0,333 (1-0,333)/100)^0,5 = 0,167 / 0,00222111^0,5 = 0,167 / 0,0471 = 3,54

3,54 > 1,96

Så med 95% säkerhet så är det statistiskt säkertställt att du är bättre än oddssättarna. Då satte jag att de 3,0 i odds till 0,333 i chans. Fan, är lite trött såhär på kvällen så vet inte om jag gjort rätt, men har för mig det.

Så standardavvikelsen på 100 spel med 33% förväntad träff är runt 8.5? Stämmer verkligen det?

zz 2010-12-22 23:38

Citat:

Ursprungligen postat av LadyDeWinter (Inlägg 90903)
Gör en någorlunda uträkning.

Nollhypotes: p < 0,333

Mothypotes: p > 0,333

punktskattning för andel = 50 / 100 = 0,5

z = 1,96 (95 % säkerhet)

z = (0,5 - 0,333) / ((0,333 (1-0,333)/100)^0,5 = 0,167 / 0,00222111^0,5 = 0,167 / 0,0471 = 3,54

3,54 > 1,96

Så med 95% säkerhet så är det statistiskt säkertställt att du är bättre än oddssättarna. Då satte jag att de 3,0 i odds till 0,333 i chans. Fan, är lite trött såhär på kvällen så vet inte om jag gjort rätt, men har för mig det.

En fråga.. Hur fick du fram första Z till 1,96? Och hur fick du det till 95% säkerhet? När jag sätter in 1,96 i länken som var postad tidigare i tråden så blir det 97,5 %.

Tacksam för svar :hattenav:

RobinD 2010-12-23 00:14

Era mattekunskaper är något jag avundas. :cheers:

zz 2010-12-23 20:08

Ingen som knäcker detta? :sad:

LadyDeWinter 2010-12-23 22:28

Citat:

Ursprungligen postat av zz (Inlägg 90917)
En fråga.. Hur fick du fram första Z till 1,96? Och hur fick du det till 95% säkerhet? När jag sätter in 1,96 i länken som var postad tidigare i tråden så blir det 97,5 %.

Tacksam för svar :hattenav:

Tänkte att den var dubbelsidig vilket inte är fallet. Så du har helt rätt :)

LadyDeWinter 2010-12-23 22:30

Citat:

Ursprungligen postat av zz (Inlägg 90907)
Tackar och bockar för detta!! :) 33% av mina sharps till dig!

Tack tack

zz 2010-12-23 23:08

Citat:

Ursprungligen postat av LadyDeWinter (Inlägg 91184)
Tänkte att den var dubbelsidig vilket inte är fallet. Så du har helt rätt :)

Jag är inte helt med på hur det här fungerar. Om z= 1,96 kom från 50-50 och inte har något att göra med oddset 3. Isf skulle ju sannolikheten vara 95 % även vid odds 4? Jag kanske gör mig själv korkad nu...

Zimond 2010-12-24 14:22

Vad är det för fel på min uträkning?



Powered by vBulletin & vBadvanced CMPS
Design, Logos, etc Copyright © Sharps.se, 2010-2011. All Rights Reserved